2000 character limit reached
A Short Note on Analyzing Sequence Complexity in Trajectory Prediction Benchmarks (2004.04677v2)
Published 27 Mar 2020 in cs.LG and cs.RO
Abstract: The analysis and quantification of sequence complexity is an open problem frequently encountered when defining trajectory prediction benchmarks. In order to enable a more informative assembly of a data basis, an approach for determining a dataset representation in terms of a small set of distinguishable prototypical sub-sequences is proposed. The approach employs a sequence alignment followed by a learning vector quantization (LVQ) stage. A first proof of concept on synthetically generated and real-world datasets shows the viability of the approach.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.