Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anomaly Detection with SDAE

Published 9 Apr 2020 in cs.LG and stat.ML | (2004.04391v1)

Abstract: Anomaly detection is a prominent data preprocessing step in learning applications for correction and/or removal of faulty data. Automating this data type with the use of autoencoders could increase the quality of the dataset by isolating anomalies that were missed through manual or basic statistical analysis. A Simple, Deep, and Supervised Deep Autoencoder were trained and compared for anomaly detection over the ASHRAE building energy dataset. Given the restricted parameters under which the models were trained, the Deep Autoencoder perfoms the best, however, the Supervised Deep Autoencoder outperforms the other models in total anomalies detected when considerations for the test datasets are given.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.