Papers
Topics
Authors
Recent
2000 character limit reached

The maximum of a branching random walk with stretched exponential tails

Published 8 Apr 2020 in math.PR | (2004.03871v2)

Abstract: We study the one-dimensional branching random walk in the case when the step size distribution has a stretched exponential tail, and, in particular, no finite exponential moments. The tail of the step size $X$ decays as $\mathbb{P}[X \geq t] \sim a \exp(-\lambda tr)$ for some constants $a, \lambda > 0$ where $r \in (0,1)$. We give a detailed description of the asymptotic behaviour of the position of the rightmost particle, proving almost-sure limit theorems, convergence in law and some integral tests. The limit theorems reveal interesting differences betweens the two regimes $ r \in (0, 2/3)$ and $ r \in (2/3, 1)$, with yet different limits in the boundary case $r = 2/3$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.