Initial, inner and inner-boundary problems for a fractional differential equation
Abstract: While it is known that one can consider the Cauchy problem for evolution equations with Caputo derivatives, the situation for the initial value problems for the Riemann-Liouville derivatives is less understood. In this paper we propose new type initial, inner and inner-boundary value problems for fractional differential equations with the Riemann-Liouville derivatives. The results on the existence and uniqueness are proved, and conditions on the solvability are found. The well-posedness of the new type initial, inner and inner-boundary conditions are also discussed. Moreover, we give explicit formulas for the solutions. As an application fractional partial differential equations for general positive operators are studied.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.