Papers
Topics
Authors
Recent
2000 character limit reached

Optimistic Agent: Accurate Graph-Based Value Estimation for More Successful Visual Navigation

Published 7 Apr 2020 in cs.CV | (2004.03222v2)

Abstract: We humans can impeccably search for a target object, given its name only, even in an unseen environment. We argue that this ability is largely due to three main reasons: the incorporation of prior knowledge (or experience), the adaptation of it to the new environment using the observed visual cues and most importantly optimistically searching without giving up early. This is currently missing in the state-of-the-art visual navigation methods based on Reinforcement Learning (RL). In this paper, we propose to use externally learned prior knowledge of the relative object locations and integrate it into our model by constructing a neural graph. In order to efficiently incorporate the graph without increasing the state-space complexity, we propose our Graph-based Value Estimation (GVE) module. GVE provides a more accurate baseline for estimating the Advantage function in actor-critic RL algorithm. This results in reduced value estimation error and, consequently, convergence to a more optimal policy. Through empirical studies, we show that our agent, dubbed as the optimistic agent, has a more realistic estimate of the state value during a navigation episode which leads to a higher success rate. Our extensive ablation studies show the efficacy of our simple method which achieves the state-of-the-art results measured by the conventional visual navigation metrics, e.g. Success Rate (SR) and Success weighted by Path Length (SPL), in AI2THOR environment.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.