Papers
Topics
Authors
Recent
Search
2000 character limit reached

Constraining images of quadratic arboreal representations

Published 6 Apr 2020 in math.NT | (2004.02847v2)

Abstract: In this paper, we prove several results on finitely generated dynamical Galois groups attached to quadratic polynomials. First we show that, over global fields, quadratic post-critically finite polynomials are precisely those having an arboreal representation whose image is topologically finitely generated. To obtain this result, we also prove the quadratic case of Hindes' conjecture on dynamical non-isotriviality. Next, we give two applications of this result. On the one hand, we prove that quadratic polynomials over global fields with abelian dynamical Galois group are necessarily post-critically finite, and we combine our results with local class field theory to classify quadratic pairs over $\mathbb Q$ with abelian dynamical Galois group, improving on recent results of Andrews and Petsche. On the other hand we show that several infinite families of subgroups of the automorphism group of the infinite binary tree cannot appear as images of arboreal representations of quadratic polynomials over number fields, yielding unconditional evidence towards Jones' finite index conjecture.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.