Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Networked Multi-Agent Reinforcement Learning with Emergent Communication (2004.02780v2)

Published 6 Apr 2020 in cs.MA and cs.AI

Abstract: Multi-Agent Reinforcement Learning (MARL) methods find optimal policies for agents that operate in the presence of other learning agents. Central to achieving this is how the agents coordinate. One way to coordinate is by learning to communicate with each other. Can the agents develop a language while learning to perform a common task? In this paper, we formulate and study a MARL problem where cooperative agents are connected to each other via a fixed underlying network. These agents can communicate along the edges of this network by exchanging discrete symbols. However, the semantics of these symbols are not predefined and, during training, the agents are required to develop a language that helps them in accomplishing their goals. We propose a method for training these agents using emergent communication. We demonstrate the applicability of the proposed framework by applying it to the problem of managing traffic controllers, where we achieve state-of-the-art performance as compared to a number of strong baselines. More importantly, we perform a detailed analysis of the emergent communication to show, for instance, that the developed language is grounded and demonstrate its relationship with the underlying network topology. To the best of our knowledge, this is the only work that performs an in depth analysis of emergent communication in a networked MARL setting while being applicable to a broad class of problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shubham Gupta (64 papers)
  2. Rishi Hazra (15 papers)
  3. Ambedkar Dukkipati (76 papers)
Citations (21)