Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReRe: A Lightweight Real-time Ready-to-Go Anomaly Detection Approach for Time Series (2004.02319v4)

Published 5 Apr 2020 in cs.LG and stat.ML

Abstract: Anomaly detection is an active research topic in many different fields such as intrusion detection, network monitoring, system health monitoring, IoT healthcare, etc. However, many existing anomaly detection approaches require either human intervention or domain knowledge, and may suffer from high computation complexity, consequently hindering their applicability in real-world scenarios. Therefore, a lightweight and ready-to-go approach that is able to detect anomalies in real-time is highly sought-after. Such an approach could be easily and immediately applied to perform time series anomaly detection on any commodity machine. The approach could provide timely anomaly alerts and by that enable appropriate countermeasures to be undertaken as early as possible. With these goals in mind, this paper introduces ReRe, which is a Real-time Ready-to-go proactive Anomaly Detection algorithm for streaming time series. ReRe employs two lightweight Long Short-Term Memory (LSTM) models to predict and jointly determine whether or not an upcoming data point is anomalous based on short-term historical data points and two long-term self-adaptive thresholds. Experiments based on real-world time-series datasets demonstrate the good performance of ReRe in real-time anomaly detection without requiring human intervention or domain knowledge.

Citations (28)

Summary

We haven't generated a summary for this paper yet.