Papers
Topics
Authors
Recent
Search
2000 character limit reached

Personalization in Human-AI Teams: Improving the Compatibility-Accuracy Tradeoff

Published 5 Apr 2020 in cs.LG, cs.AI, and cs.HC | (2004.02289v2)

Abstract: AI systems that model and interact with users can update their models over time to reflect new information and changes in the environment. Although these updates may improve the overall performance of the AI system, they may actually hurt the performance with respect to individual users. Prior work has studied the trade-off between improving the system's accuracy following an update and the compatibility of the updated system with prior user experience. The more the model is forced to be compatible with a prior version, the higher loss in accuracy it will incur. In this paper, we show that by personalizing the loss function to specific users, in some cases it is possible to improve the compatibility-accuracy trade-off with respect to these users (increase the compatibility of the model while sacrificing less accuracy). We present experimental results indicating that this approach provides moderate improvements on average (around 20%) but large improvements for certain users (up to 300%).

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.