Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Imbalanced Data Learning by Minority Class Augmentation using Capsule Adversarial Networks (2004.02182v3)

Published 5 Apr 2020 in cs.LG and stat.ML

Abstract: The fact that image datasets are often imbalanced poses an intense challenge for deep learning techniques. In this paper, we propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods, generative adversarial networks (GANs) and capsule network. In our model, generative and discriminative networks play a novel competitive game, in which the generator generates samples towards specific classes from multivariate probabilities distribution. The discriminator of our model is designed in a way that while recognizing the real and fake samples, it is also requires to assign classes to the inputs. Since GAN approaches require fully observed data during training, when the training samples are imbalanced, the approaches might generate similar samples which leading to data overfitting. This problem is addressed by providing all the available information from both the class components jointly in the adversarial training. It improves learning from imbalanced data by incorporating the majority distribution structure in the generation of new minority samples. Furthermore, the generator is trained with feature matching loss function to improve the training convergence. In addition, prevents generation of outliers and does not affect majority class space. The evaluations show the effectiveness of our proposed methodology; in particular, the coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Pourya Shamsolmoali (27 papers)
  2. Masoumeh Zareapoor (19 papers)
  3. Linlin Shen (133 papers)
  4. Abdul Hamid Sadka (3 papers)
  5. Jie Yang (516 papers)
Citations (59)

Summary

We haven't generated a summary for this paper yet.