Papers
Topics
Authors
Recent
2000 character limit reached

A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS (2004.01899v3)

Published 4 Apr 2020 in cs.LG, cs.NE, and stat.ML

Abstract: This work proposes a novel Graph-based neural ArchiTecture Encoding Scheme, a.k.a. GATES, to improve the predictor-based neural architecture search. Specifically, different from existing graph-based schemes, GATES models the operations as the transformation of the propagating information, which mimics the actual data processing of neural architecture. GATES is a more reasonable modeling of the neural architectures, and can encode architectures from both the "operation on node" and "operation on edge" cell search spaces consistently. Experimental results on various search spaces confirm GATES's effectiveness in improving the performance predictor. Furthermore, equipped with the improved performance predictor, the sample efficiency of the predictor-based neural architecture search (NAS) flow is boosted. Codes are available at https://github.com/walkerning/aw_nas.

Citations (95)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.