Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Multi-Source Weak Social Supervision for Early Detection of Fake News

Published 3 Apr 2020 in cs.LG, cs.SI, and stat.ML | (2004.01732v1)

Abstract: Social media has greatly enabled people to participate in online activities at an unprecedented rate. However, this unrestricted access also exacerbates the spread of misinformation and fake news online which might cause confusion and chaos unless being detected early for its mitigation. Given the rapidly evolving nature of news events and the limited amount of annotated data, state-of-the-art systems on fake news detection face challenges due to the lack of large numbers of annotated training instances that are hard to come by for early detection. In this work, we exploit multiple weak signals from different sources given by user and content engagements (referred to as weak social supervision), and their complementary utilities to detect fake news. We jointly leverage the limited amount of clean data along with weak signals from social engagements to train deep neural networks in a meta-learning framework to estimate the quality of different weak instances. Experiments on realworld datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.

Citations (52)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.