Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On Locating Paths in Compressed Tries (2004.01120v4)

Published 2 Apr 2020 in cs.DS

Abstract: In this paper, we consider the problem of compressing a trie while supporting the powerful \emph{locate} queries: to return the pre-order identifiers of all nodes reached by a path labeled with a given query pattern. Our result builds on top of the XBWT tree transform of Ferragina et al. [FOCS 2005] and generalizes the \emph{r-index} locate machinery of Gagie et al. [SODA 2018, JACM 2020] based on the run-length encoded Burrows-Wheeler transform (BWT). Our first contribution is to propose a suitable generalization of the run-length BWT to tries. We show that this natural generalization enjoys several of the useful properties of its counterpart on strings: in particular, the transform natively supports counting occurrences of a query pattern on the trie's paths and its size $r$ captures the trie's repetitiveness and lower-bounds a natural notion of trie entropy. Our main contribution is a much deeper insight into the combinatorial structure of this object. In detail, we show that a data structure of $O(r\log n) + 2n + o(n)$ bits, where $n$ is the number of nodes, allows locating the $occ$ occurrences of a pattern of length $m$ in nearly-optimal $O(m\log\sigma + occ)$ time, where $\sigma$ is the alphabet's size. Our solution consists in sampling $O(r)$ nodes that can be used as "anchor points" during the locate process. Once obtained the pre-order identifier of the first pattern occurrence (in co-lexicographic order), we show that a constant number of constant-time jumps between those anchor points lead to the identifier of the next pattern occurrence, thus enabling locating in optimal $O(1)$ time per occurrence.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.