Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiplication operator on the Bergman space by a proper holomorphic map (2004.00854v2)

Published 2 Apr 2020 in math.FA

Abstract: Suppose that $f := (f_1,\ldots,f_d):\Omega_1\to\Omega_2$ is a proper holomorphic map between two bounded domains in $\mathbb Cd.$ In this paper, we find a non-trivial minimal joint reducing subspace for the multiplication operator (tuple) $M_f=(M_{f_1},\ldots, M_{f_d})$ on the Bergman space $\mathbb A2(\Omega_1)$, say $\mathcal M.$ We further show that the restriction of $(M_{f_1},\ldots,M_{f_d})$ to $\mathcal M$ is unitarily equivalent to Bergman operator on $\mathbb A2(\Omega_2).$

Summary

We haven't generated a summary for this paper yet.