On the Quantization of Seiberg-Witten Geometry (2004.00654v2)
Abstract: We propose a double quantization of four-dimensional ${\cal N}=2$ Seiberg-Witten geometry, for all classical gauge groups and a wide variety of matter content. This can be understood as a set of certain non-perturbative Schwinger-Dyson identities, following the program initiated by Nekrasov [arXiv:1512.05388]. The construction relies on the computation of the instanton partition function of the gauge theory on the so-called $\Omega$-background on $\mathbb{R}4$, in the presence of half-BPS codimension 4 defects. The two quantization parameters are identified as the two parameters of this background. The Seiberg-Witten curve of each theory is recovered in the flat space limit. Whenever possible, we motivate our construction from type IIA string theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.