Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Wigner's Semicircle Law of Weighted Random Networks

Published 31 Mar 2020 in physics.soc-ph, cs.SI, and stat.AP | (2004.00125v2)

Abstract: The spectral graph theory provides an algebraical approach to investigate the characteristics of weighted networks using the eigenvalues and eigenvectors of a matrix (e.g., normalized Laplacian matrix) that represents the structure of the network. However, it is difficult for large-scale and complex networks (e.g., social network) to represent their structure as a matrix correctly. If there is a universality that the eigenvalues are independent of the detailed structure in large-scale and complex network, we can avoid the difficulty. In this paper, we clarify the Wigner's Semicircle Law for weighted networks as such a universality. The law indicates that the eigenvalues of the normalized Laplacian matrix for weighted networks can be calculated from the a few network statistics (the average degree, the average link weight, and the square average link weight) when the weighted networks satisfy the sufficient condition of the node degrees and the link weights.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.