Problems with classification, hypothesis testing, and estimator convergence in the analysis of degree distributions in networks
Abstract: In their recent work "Scale-free networks are rare", Broido and Clauset address the problem of the analysis of degree distributions in networks to classify them as scale-free at different strengths of "scale-freeness." Over the last two decades, a multitude of papers in network science have reported that the degree distributions in many real-world networks follow power laws. Such networks were then referred to as scale-free. However, due to a lack of a precise definition, the term has evolved to mean a range of different things, leading to confusion and contradictory claims regarding scale-freeness of a given network. Recognizing this problem, the authors of "Scale-free networks are rare" try to fix it. They attempt to develop a versatile and statistically principled approach to remove this scale-free ambiguity accumulated in network science literature. Although their paper presents a fair attempt to address this fundamental problem, we must bring attention to some important issues in it.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.