Papers
Topics
Authors
Recent
2000 character limit reached

Invertible braided tensor categories

Published 30 Mar 2020 in math.QA | (2003.13812v1)

Abstract: We prove that a finite braided tensor category A is invertible in the Morita 4-category BrTens of braided tensor categories if, and only if, it is non-degenerate. This includes the case of semisimple modular tensor categories, but also non-semisimple examples such as categories of representations of the small quantum group at good roots of unity. Via the cobordism hypothesis, we obtain new invertible 4-dimensional framed topological field theories, which we regard as a non-semisimple framed version of the Crane-Yetter-Kauffman invariants, after Freed--Teleman and Walker's construction in the semisimple case. More generally, we characterize invertibility for E_1- and E_2-algebras in an arbitrary symmetric monoidal oo-category, and we conjecture a similar characterization of invertible E_n-algebras for any n. Finally, we propose the Picard group of BrTens as a generalization of the Witt group of non-degenerate braided fusion categories, and pose a number of open questions about it.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.