Papers
Topics
Authors
Recent
2000 character limit reached

A generalized Hausdorff distance based quality metric for point cloud geometry

Published 30 Mar 2020 in eess.IV and cs.MM | (2003.13669v1)

Abstract: Reliable quality assessment of decoded point cloud geometry is essential to evaluate the compression performance of emerging point cloud coding solutions and guarantee some target quality of experience. This paper proposes a novel point cloud geometry quality assessment metric based on a generalization of the Hausdorff distance. To achieve this goal, the so-called generalized Hausdorff distance for multiple rankings is exploited to identify the best performing quality metric in terms of correlation with the MOS scores obtained from a subjective test campaign. The experimental results show that the quality metric derived from the classical Hausdorff distance leads to low objective-subjective correlation and, thus, fails to accurately evaluate the quality of decoded point clouds for emerging codecs. However, the quality metric derived from the generalized Hausdorff distance with an appropriately selected ranking, outperforms the MPEG adopted geometry quality metrics when decoded point clouds with different types of coding distortions are considered.

Citations (63)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.