Papers
Topics
Authors
Recent
2000 character limit reached

Weighted Random Search for CNN Hyperparameter Optimization

Published 30 Mar 2020 in cs.LG and stat.ML | (2003.13300v1)

Abstract: Nearly all model algorithms used in machine learning use two different sets of parameters: the training parameters and the meta-parameters (hyperparameters). While the training parameters are learned during the training phase, the values of the hyperparameters have to be specified before learning starts. For a given dataset, we would like to find the optimal combination of hyperparameter values, in a reasonable amount of time. This is a challenging task because of its computational complexity. In previous work [11], we introduced the Weighted Random Search (WRS) method, a combination of Random Search (RS) and probabilistic greedy heuristic. In the current paper, we compare the WRS method with several state-of-the art hyperparameter optimization methods with respect to Convolutional Neural Network (CNN) hyperparameter optimization. The criterion is the classification accuracy achieved within the same number of tested combinations of hyperparameter values. According to our experiments, the WRS algorithm outperforms the other methods.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.