Papers
Topics
Authors
Recent
2000 character limit reached

Dynamics of neural networks with elapsed time model and learning processes

Published 30 Mar 2020 in math.AP and q-bio.NC | (2003.13247v2)

Abstract: We introduce and study a new model of interacting neural networks, incorporating the spatial dimension (e.g. position of neurons across the cortex) and some learning processes. The dynamic of each neural network is described via the elapsed time model, that is, the neurons are described by the elapsed time since their last discharge and the chosen learning processes are essentially inspired from the Hebbian rule. We then obtain a system of integro-differential equations, from which we analyze the convergence to stationary states by the means of entropy method and Doeblin's theory in the case of weak interconnections. We also consider the situation where neural activity is faster than the learning process and give conditions where one can approximate the dynamics by a solution with a similar profile of a steady state. For stronger interconnections, we present some numerical simulations to observe how the parameters of the system can give different behaviors and pattern formations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.