Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Nash Equilibrium Seeking with Limited Cost Function Knowledge via A Consensus-Based Gradient-Free Method

Published 28 Mar 2020 in math.OC | (2003.12836v1)

Abstract: This paper considers a distributed Nash equilibrium seeking problem, where the players only have partial access to other players' actions, such as their neighbors' actions. Thus, the players are supposed to communicate with each other to estimate other players' actions. To solve the problem, a leader-following consensus gradient-free distributed Nash equilibrium seeking algorithm is proposed. This algorithm utilizes only the measurements of the player's local cost function without the knowledge of its explicit expression or the requirement on its smoothness. Hence, the algorithm is gradient-free during the entire updating process. Moreover, the analysis on the convergence of the Nash equilibrium is studied for the algorithm with both diminishing and constant step-sizes, respectively. Specifically, in the case of diminishing step-size, it is shown that the players' actions converge to the Nash equilibrium almost surely, while in the case of fixed step-size, the convergence to the neighborhood of the Nash equilibrium is achieved. The performance of the proposed algorithm is verified through numerical simulations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.