Towards Automating the AI Operations Lifecycle
Abstract: Today's AI deployments often require significant human involvement and skill in the operational stages of the model lifecycle, including pre-release testing, monitoring, problem diagnosis and model improvements. We present a set of enabling technologies that can be used to increase the level of automation in AI operations, thus lowering the human effort required. Since a common source of human involvement is the need to assess the performance of deployed models, we focus on technologies for performance prediction and KPI analysis and show how they can be used to improve automation in the key stages of a typical AI operations pipeline.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.