Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

GeoFusion: Geometric Consistency informed Scene Estimation in Dense Clutter (2003.12610v2)

Published 27 Mar 2020 in cs.RO

Abstract: We propose GeoFusion, a SLAM-based scene estimation method for building an object-level semantic map in dense clutter. In dense clutter, objects are often in close contact and severe occlusions, which brings more false detections and noisy pose estimates from existing perception methods. To solve these problems, our key insight is to consider geometric consistency at the object level within a general SLAM framework. The geometric consistency is defined in two parts: geometric consistency score and geometric relation. The geometric consistency score describes the compatibility between object geometry model and observation point cloud. Meanwhile, it provides a reliable measure to filter out false positives in data association. The geometric relation represents the relationship (e.g. contact) between geometric features (e.g. planes) among objects. The geometric relation makes the graph optimization for poses more robust and accurate. GeoFusion can robustly and efficiently infer the object labels, 6D object poses, and spatial relations from continuous noisy semantic measurements. We quantitatively evaluate our method using observations from a Fetch mobile manipulation robot. Our results demonstrate greater robustness against false estimates than frame-by-frame pose estimation from the state-of-the-art convolutional neural network.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.