Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantum State Discrimination on Reconfigurable Noise-Robust Quantum Networks (2003.11586v1)

Published 25 Mar 2020 in quant-ph

Abstract: A fundamental problem in Quantum Information Processing is the discrimination amongst a set of quantum states of a system. In this paper, we address this problem on an open quantum system described by a graph, whose evolution is defined by a Quantum Stochastic Walk. In particular, the structure of the graph mimics those of neural networks, with the quantum states to discriminate encoded on input nodes and with the discrimination obtained on the output nodes. We optimize the parameters of the network to obtain the highest probability of correct discrimination. Numerical simulations show that after a transient time the probability of correct decision approaches the theoretical optimal quantum limit. These results are confirmed analytically for small graphs. Finally, we analyze the robustness and reconfigurability of the network for different set of quantum states, and show that this architecture can pave the way to experimental realizations of our protocol as well as novel quantum generalizations of deep learning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.