Papers
Topics
Authors
Recent
Search
2000 character limit reached

Predicting Legal Proceedings Status: Approaches Based on Sequential Text Data

Published 13 Mar 2020 in cs.CL, cs.LG, and stat.ML | (2003.11561v4)

Abstract: The objective of this paper is to develop predictive models to classify Brazilian legal proceedings in three possible classes of status: (i) archived proceedings, (ii) active proceedings, and (iii) suspended proceedings. This problem's resolution is intended to assist public and private institutions in managing large portfolios of legal proceedings, providing gains in scale and efficiency. In this paper, legal proceedings are made up of sequences of short texts called "motions." We combined several NLP and machine learning techniques to solve the problem. Although working with Portuguese NLP, which can be challenging due to lack of resources, our approaches performed remarkably well in the classification task, achieving maximum accuracy of .93 and top average F1 Scores of .89 (macro) and .93 (weighted). Furthermore, we could extract and interpret the patterns learned by one of our models besides quantifying how those patterns relate to the classification task. The interpretability step is important among machine learning legal applications and gives us an exciting insight into how black-box models make decisions.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.