Papers
Topics
Authors
Recent
2000 character limit reached

Boosting Ridge Regression for High Dimensional Data Classification (2003.11283v1)

Published 25 Mar 2020 in cs.LG and stat.ML

Abstract: Ridge regression is a well established regression estimator which can conveniently be adapted for classification problems. One compelling reason is probably the fact that ridge regression emits a closed-form solution thereby facilitating the training phase. However in the case of high-dimensional problems, the closed-form solution which involves inverting the regularised covariance matrix is rather expensive to compute. The high computational demand of such operation also renders difficulty in constructing ensemble of ridge regressions. In this paper, we consider learning an ensemble of ridge regressors where each regressor is trained in its own randomly projected subspace. Subspace regressors are later combined via adaptive boosting methodology. Experiments based on five high-dimensional classification problems demonstrated the effectiveness of the proposed method in terms of learning time and in some cases improved predictive performance can be observed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.