Papers
Topics
Authors
Recent
2000 character limit reached

An Inverse-free Truncated Rayleigh-Ritz Method for Sparse Generalized Eigenvalue Problem

Published 24 Mar 2020 in stat.ML and cs.LG | (2003.10897v1)

Abstract: This paper considers the sparse generalized eigenvalue problem (SGEP), which aims to find the leading eigenvector with at most $k$ nonzero entries. SGEP naturally arises in many applications in machine learning, statistics, and scientific computing, for example, the sparse principal component analysis (SPCA), the sparse discriminant analysis (SDA), and the sparse canonical correlation analysis (SCCA). In this paper, we focus on the development of a three-stage algorithm named {\em inverse-free truncated Rayleigh-Ritz method} ({\em IFTRR}) to efficiently solve SGEP. In each iteration of IFTRR, only a small number of matrix-vector products is required. This makes IFTRR well-suited for large scale problems. Particularly, a new truncation strategy is proposed, which is able to find the support set of the leading eigenvector effectively. Theoretical results are developed to explain why IFTRR works well. Numerical simulations demonstrate the merits of IFTRR.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.