Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Euclidean TSP in Narrow Strips (2003.09948v2)

Published 22 Mar 2020 in cs.CG

Abstract: We investigate how the complexity of Euclidean TSP for point sets $P$ inside the strip $(-\infty,+\infty)\times [0,\delta]$ depends on the strip width $\delta$. We obtain two main results. First, for the case where the points have distinct integer $x$-coordinates, we prove that a shortest bitonic tour (which can be computed in $O(n\log2 n)$ time using an existing algorithm) is guaranteed to be a shortest tour overall when $\delta\leq 2\sqrt{2}$, a bound which is best possible. Second, we present an algorithm that is fixed-parameter tractable with respect to $\delta$. Our algorithm has running time $2{O(\sqrt{\delta})} n + O(\delta2 n2)$ for sparse point sets, where each $1\times\delta$ rectangle inside the strip contains $O(1)$ points. For random point sets, where the points are chosen uniformly at random from the rectangle $[0,n]\times [0,\delta]$, it has an expected running time of $2{O(\sqrt{\delta})} n$. These results generalise to point sets $P$ inside a hypercylinder of width $\delta$. In this case, the factors $2{O(\sqrt{\delta})}$ become $2{O(\delta{1-1/d})}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. H.Y. Alkema and M. de Berg. Rectilinear steiner trees in narrow strips. In Proc. 37th Int. Symp. on Comp. Geom. (SoCG), pages 9:1–9:16, 2021.
  2. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM, 45(5):753–782, 1998.
  3. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86–111, 2015.
  4. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Graduate School of Industrial Administration, Carnegie Mellon University, 1976.
  5. Introduction to Algorithms (3rd edition). MIT Press, 2009.
  6. M. Cutler. Efficient special case algorithms for the n𝑛nitalic_n-line planar traveling salesman problem. Networks, 10:183–195, 1980.
  7. Fast hamiltonicity checking via bases of perfect matchings. J. ACM, 65(3):12:1–12:46, 2018.
  8. D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure. Probability and Its Applications. Springer New York, 2007.
  9. An ETH-tight exact algorithm for Euclidean TSP. In Proc. 59th IEEE Symp. Found. Comput. Sci. (FOCS), pages 450–461, 2018.
  10. Fine-grained complexity analysis of two classic TSP variants. In Proc. 43rd Int. Conf. Automata Lang. Prog. (ICALP), pages 5:1–5:14, 2016.
  11. Computational Geometry: Algorithms and Applications. Springer, 2008.
  12. Fine-grained complexity analysis of two classic TSP variants. CoRR, abs/1607.02725, 2016.
  13. The traveling salesman problem with few inner points. Oper. Res. Lett., 34(1):106–110, 2006.
  14. The convex-hull-and-line traveling salesman problem: a solvable case. Inf. Proc. Lett., 51:141–148, 1994.
  15. V.G. Deineko and G. Woeginger. The convex-hull-and-k𝑘kitalic_k-lines traveling salesman problem. Inf. Proc. Lett., 59(3):295–301, 1996.
  16. Testing the necklace condition for shortest tours and optimal factors in the plane. Theoret. Comput. Sci., 66:157–180, 1989.
  17. Subexponential algorithms for rectilinear Steiner tree and arborescence problems. ACM Transactions on Algorithms, 16:1–37, 03 2020.
  18. Some NP-complete geometric problems. In Proc. 8th ACM Symp. Theory Comp. (STOC), pages 10–22, 1976.
  19. The searching over separators strategy to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
  20. R. Impagliazzo and R. Paturi. On the complexity of k𝑘kitalic_k-SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001.
  21. V. Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal Institute of Technology, Stockholm, 1992.
  22. J.S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput., 28(4):1298–1309, 1999.
  23. C.H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theoret. Comput. Sci., 4(3):237–244, 1977.
  24. S. Rao and W. D. Smith. Approximating geometrical graphs via ‘spanners’ and ‘banyans’. In Proc. 30th ACM Symp. Theory Comp. (STOC), pages 540–550, 1998.
  25. A.G. Reinhold. Some results on minimal covertex polygons. Manuscript, City College of New York, 1965.
  26. John Riordan. Moment recurrence relations for binomial, poisson and hypergeometric frequency distributions. Ann. Math. Statist., 8(2):103–111, 06 1937.
  27. G. Rote. The n𝑛nitalic_n-line traveling salesman problem. Networks, 22:91–108, 1992.
  28. D. Sanders. On extreme circuits. PhD thesis, City University of New York, 1968.
  29. Geometric separator theorems and applications. In Proc. 39th IEEE Symp. Found. Comput. Sci. (FOCS), pages 232–243, 1998.
  30. H. Thorisson. Coupling, stationarity, and regeneration. Springer, 2000.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com