Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Algorithms for Orienteering and $k$-TSP (2002.07727v2)

Published 18 Feb 2020 in cs.DS and cs.CG

Abstract: We consider the rooted orienteering problem in Euclidean space: Given $n$ points $P$ in $\mathbb Rd$, a root point $s\in P$ and a budget $\mathcal B>0$, find a path that starts from $s$, has total length at most $\mathcal B$, and visits as many points of $P$ as possible. This problem is known to be NP-hard, hence we study $(1-\delta)$-approximation algorithms. The previous Polynomial-Time Approximation Scheme (PTAS) for this problem, due to Chen and Har-Peled (2008), runs in time $n{O(d\sqrt{d}/\delta)}(\log n){(d/\delta){O(d)}}$, and improving on this time bound was left as an open problem. Our main contribution is a PTAS with a significantly improved time complexity of $n{O(1/\delta)}(\log n){(d/\delta){O(d)}}$. A known technique for approximating the orienteering problem is to reduce it to solving $1/\delta$ correlated instances of rooted $k$-TSP (a $k$-TSP tour is one that visits at least $k$ points). However, the $k$-TSP tours in this reduction must achieve a certain excess guarantee (namely, their length can surpass the optimum length only in proportion to a parameter of the optimum called excess) that is stronger than the usual $(1+\delta)$-approximation. Our main technical contribution is to improve the running time of these $k$-TSP variants, particularly in its dependence on the dimension $d$. Indeed, our running time is polynomial even for a moderately large dimension, roughly up to $d=O(\log\log n)$ instead of $d=O(1)$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.