Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensembles of Deep Neural Networks for Action Recognition in Still Images (2003.09893v1)

Published 22 Mar 2020 in cs.CV

Abstract: Despite the fact that notable improvements have been made recently in the field of feature extraction and classification, human action recognition is still challenging, especially in images, in which, unlike videos, there is no motion. Thus, the methods proposed for recognizing human actions in videos cannot be applied to still images. A big challenge in action recognition in still images is the lack of large enough datasets, which is problematic for training deep Convolutional Neural Networks (CNNs) due to the overfitting issue. In this paper, by taking advantage of pre-trained CNNs, we employ the transfer learning technique to tackle the lack of massive labeled action recognition datasets. Furthermore, since the last layer of the CNN has class-specific information, we apply an attention mechanism on the output feature maps of the CNN to extract more discriminative and powerful features for classification of human actions. Moreover, we use eight different pre-trained CNNs in our framework and investigate their performance on Stanford 40 dataset. Finally, we propose using the Ensemble Learning technique to enhance the overall accuracy of action classification by combining the predictions of multiple models. The best setting of our method is able to achieve 93.17$\%$ accuracy on the Stanford 40 dataset.

Citations (16)

Summary

We haven't generated a summary for this paper yet.