Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unique continuation for the gradient of eigenfunctions and Wegner estimates for random divergence-type operators (2003.09849v2)

Published 22 Mar 2020 in math.FA, math.AP, and math.SP

Abstract: We prove a scale-free quantitative unique continuation estimate for the gradient of eigenfunctions of divergence-type operators, i.e. operators of the form $-\mathrm{div}A\nabla$, where the matrix function $A$ is uniformly elliptic. The proof uses a unique continuation principle for elliptic second order operators and a lower bound on the $L2$-norm of the gradient of eigenfunctions corresponding to strictly positive eigenvalues. As an application, we prove an eigenvalue lifting estimate that allows us to prove a Wegner estimate for random divergence-type operators. Here our approach allows us to get rid of a restrictive covering condition that was essential in previous proofs of Wegner estimates for such models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.