Normal forms for strong magnetic systems on surfaces: Trapping regions and rigidity of Zoll systems (2003.09141v4)
Abstract: We prove a normal form for strong magnetic fields on a closed, oriented surface and use it to derive two dynamical results for the associated flow. First, we show the existence of KAM tori and trapping regions provided a natural non-resonance condition holds. Second, we prove that the flow cannot be Zoll unless (i) the Riemannian metric has constant curvature and the magnetic function is constant, or (ii) the magnetic function vanishes and the metric is Zoll. We complement the second result by exhibiting an exotic magnetic field on a flat two-torus yielding a Zoll flow for arbitrarily small rescalings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.