Papers
Topics
Authors
Recent
2000 character limit reached

Efficient improper learning for online logistic regression

Published 18 Mar 2020 in cs.LG, math.ST, stat.ML, and stat.TH | (2003.08109v3)

Abstract: We consider the setting of online logistic regression and consider the regret with respect to the 2-ball of radius B. It is known (see [Hazan et al., 2014]) that any proper algorithm which has logarithmic regret in the number of samples (denoted n) necessarily suffers an exponential multiplicative constant in B. In this work, we design an efficient improper algorithm that avoids this exponential constant while preserving a logarithmic regret. Indeed, [Foster et al., 2018] showed that the lower bound does not apply to improper algorithms and proposed a strategy based on exponential weights with prohibitive computational complexity. Our new algorithm based on regularized empirical risk minimization with surrogate losses satisfies a regret scaling as O(B log(Bn)) with a per-round time-complexity of order O(d2).

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.