Papers
Topics
Authors
Recent
2000 character limit reached

String topology of finite groups of Lie type (2003.07852v1)

Published 17 Mar 2020 in math.AT, math.GR, and math.RT

Abstract: We show that the mod $\ell$ cohomology of any finite group of Lie type in characteristic $p$ different from $\ell$ admits the structure of a module over the mod $\ell$ cohomology of the free loop space of the classifying space $BG$ of the corresponding compact Lie group $G$, via ring and module structures constructed from string topology, a la Chas-Sullivan. If a certain fundamental class in the homology of the finite group of Lie type is non-trivial, then this module structure becomes free of rank one, and provides a structured isomorphism between the two cohomology rings equipped with the cup product, up to a filtration. We verify the nontriviality of the fundamental class in a range of cases, including all simply connected untwisted classical groups over the field of $q$ elements, with $q$ congruent to 1 mod $\ell$. We also show how to deal with twistings and get rid of the congruence condition by replacing $BG$ by a certain $\ell$-compact fixed point group depending on the order of $q$ mod $\ell$, without changing the finite group. With this modification, we know of no examples where the fundamental class is trivial, raising the possibility of a general structural answer to an open question of Tezuka, who speculated about the existence of an isomorphism between the two cohomology rings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.