Papers
Topics
Authors
Recent
2000 character limit reached

TraLFM: Latent Factor Modeling of Traffic Trajectory Data

Published 16 Mar 2020 in cs.SI, cs.LG, and stat.ML | (2003.07780v1)

Abstract: The widespread use of positioning devices (e.g., GPS) has given rise to a vast body of human movement data, often in the form of trajectories. Understanding human mobility patterns could benefit many location-based applications. In this paper, we propose a novel generative model called TraLFM via latent factor modeling to mine human mobility patterns underlying traffic trajectories. TraLFM is based on three key observations: (1) human mobility patterns are reflected by the sequences of locations in the trajectories; (2) human mobility patterns vary with people; and (3) human mobility patterns tend to be cyclical and change over time. Thus, TraLFM models the joint action of sequential, personal and temporal factors in a unified way, and brings a new perspective to many applications such as latent factor analysis and next location prediction. We perform thorough empirical studies on two real datasets, and the experimental results confirm that TraLFM outperforms the state-of-the-art methods significantly in these applications.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.