Papers
Topics
Authors
Recent
2000 character limit reached

Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior

Published 17 Mar 2020 in cs.CV, cs.LG, and eess.IV | (2003.07637v2)

Abstract: Deep neural networks are known to be susceptible to adversarial noise, which are tiny and imperceptible perturbations. Most of previous work on adversarial attack mainly focus on image models, while the vulnerability of video models is less explored. In this paper, we aim to attack video models by utilizing intrinsic movement pattern and regional relative motion among video frames. We propose an effective motion-excited sampler to obtain motion-aware noise prior, which we term as sparked prior. Our sparked prior underlines frame correlations and utilizes video dynamics via relative motion. By using the sparked prior in gradient estimation, we can successfully attack a variety of video classification models with fewer number of queries. Extensive experimental results on four benchmark datasets validate the efficacy of our proposed method.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.