Perturbed Iterate SGD for Lipschitz Continuous Loss Functions
Abstract: This paper presents an extension of stochastic gradient descent for the minimization of Lipschitz continuous loss functions. Our motivation is for use in non-smooth non-convex stochastic optimization problems, which are frequently encountered in applications such as machine learning. Using the Clarke $\epsilon$-subdifferential, we prove the non-asymptotic convergence to an approximate stationary point in expectation for the proposed method. From this result, a method with non-asymptotic convergence with high probability, as well as a method with asymptotic convergence to a Clarke stationary point almost surely are developed. Our results hold under the assumption that the stochastic loss function is a Carath\'eodory function which is almost everywhere Lipschitz continuous in the decision variables. To the best of our knowledge this is the first non-asymptotic convergence analysis under these minimal assumptions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.