Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the left primeness of some polynomial matrices with applications to convolutional codes

Published 16 Mar 2020 in cs.IT and math.IT | (2003.07322v3)

Abstract: Maximum distance profile (MDP) convolutional codes have the property that their column distances are as large as possible for given rate and degree. There exists a well-known criterion to check whether a code is MDP using the generator or the parity-check matrix of the code. In this paper, we show that under the assumption that $n-k$ divides $\delta$ or $k$ divides $\delta$, a polynomial matrix that fulfills the MDP criterion is actually always left prime. In particular, when $k$ divides $\delta$, this implies that each MDP convolutional code is noncatastrophic. Moreover, when $n-k$ and $k$ do not divide $\delta$, we show that the MDP criterion is in general not enough to ensure left primeness. In this case, with one more assumption, we still can guarantee the result.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.