FragNet: Writer Identification using Deep Fragment Networks
Abstract: Writer identification based on a small amount of text is a challenging problem. In this paper, we propose a new benchmark study for writer identification based on word or text block images which approximately contain one word. In order to extract powerful features on these word images, a deep neural network, named FragNet, is proposed. The FragNet has two pathways: feature pyramid which is used to extract feature maps and fragment pathway which is trained to predict the writer identity based on fragments extracted from the input image and the feature maps on the feature pyramid. We conduct experiments on four benchmark datasets, which show that our proposed method can generate efficient and robust deep representations for writer identification based on both word and page images.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.