Papers
Topics
Authors
Recent
Search
2000 character limit reached

FragNet: Writer Identification using Deep Fragment Networks

Published 16 Mar 2020 in cs.CV | (2003.07212v2)

Abstract: Writer identification based on a small amount of text is a challenging problem. In this paper, we propose a new benchmark study for writer identification based on word or text block images which approximately contain one word. In order to extract powerful features on these word images, a deep neural network, named FragNet, is proposed. The FragNet has two pathways: feature pyramid which is used to extract feature maps and fragment pathway which is trained to predict the writer identity based on fragments extracted from the input image and the feature maps on the feature pyramid. We conduct experiments on four benchmark datasets, which show that our proposed method can generate efficient and robust deep representations for writer identification based on both word and page images.

Citations (65)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.