Deep Convolutional Neural Network Model for Short-Term Electricity Price Forecasting
Abstract: In the modern power market, electricity trading is an extremely competitive industry. More accurate price forecast is crucial to help electricity producers and traders make better decisions. In this paper, a novel method of convolutional neural network (CNN) is proposed to rapidly provide hourly forecasting in the energy market. To improve prediction accuracy, we divide the annual electricity price data into four categories by seasons and conduct training and forecasting for each category respectively. By comparing the proposed method with other existing methods, we find that the proposed model has achieved outstanding results, the mean absolute percentage error (MAPE) and root mean square error (RMSE) for each category are about 5.5% and 3, respectively.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.