Papers
Topics
Authors
Recent
2000 character limit reached

Memristive Learning Cellular Automata: Theory and Applications

Published 16 Mar 2020 in cs.ET | (2003.06983v1)

Abstract: Memristors are novel non volatile devices that manage to combine storing and processing capabilities in the same physical place.Their nanoscale dimensions and low power consumption enable the further design of various nanoelectronic processing circuits and corresponding computing architectures, like neuromorhpic, in memory, unconventional, etc.One of the possible ways to exploit the memristor's advantages is by combining them with Cellular Automata (CA).CA constitute a well known non von Neumann computing architecture that is based on the local interconnection of simple identical cells forming N-dimensional grids.These local interconnections allow the emergence of global and complex phenomena.In this paper, we propose a hybridization of the CA original definition coupled with memristor based implementation, and, more specifically, we focus on Memristive Learning Cellular Automata (MLCA), which have the ability of learning using also simple identical interconnected cells and taking advantage of the memristor devices inherent variability.The proposed MLCA circuit level implementation is applied on optimal detection of edges in image processing through a series of SPICE simulations, proving its robustness and efficacy.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.