Papers
Topics
Authors
Recent
2000 character limit reached

Perfect modules with Betti numbers $(2,6,5,1)$ (2003.06540v1)

Published 14 Mar 2020 in math.AC

Abstract: In 2018 Celikbas, Laxmi, Kra\'skiewicz, and Weyman exhibited an interesting family of perfect ideals of codimension three, with five generators, of Cohen-Macaulay type two with trivial multiplication on the Tor algebra. All previously known perfect ideals of codimension three, with five generators, of Cohen-Macaulay type two had been found by Brown in 1987. Brown's ideals all have non-trivial multiplication on the Tor algebra. We prove that all of the ideals of Brown are obtained from the ideals of Celikbas, Laxmi, Kra\'skiewicz, and Weyman by (non-homogeneous) specialization. We also prove that both families of ideals, when built using power series variables over a field, define rigid algebras in the sense of Lichtenbaum and Schlessinger.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.