Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration Framework

Published 13 Mar 2020 in cs.LG, cs.AI, cs.CV, cs.NE, and stat.ML | (2003.06513v2)

Abstract: Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices. However, previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data. To mitigate this concern, we propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset. At the algorithm level of the proposed framework, a systematic weight pruning technique based on the alternating direction method of multipliers (ADMM) is designed to iteratively solve the pattern-based pruning problem for each layer with randomly generated synthetic data. In addition, corresponding optimizations at the compiler level are leveraged for inference accelerations on devices. With the proposed framework, users could avoid the time-consuming pruning process for non-experts and directly benefit from compressed models. Experimental results show that the proposed framework outperforms three state-of-art end-to-end DNN frameworks, i.e., TensorFlow-Lite, TVM, and MNN, with speedup up to 4.2X, 2.5X, and 2.0X, respectively, with almost no accuracy loss, while preserving data privacy.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.