Papers
Topics
Authors
Recent
2000 character limit reached

Mass Estimation of Galaxy Clusters with Deep Learning I: Sunyaev-Zel'dovich Effect

Published 13 Mar 2020 in astro-ph.CO and cs.LG | (2003.06135v2)

Abstract: We present a new application of deep learning to infer the masses of galaxy clusters directly from images of the microwave sky. Effectively, this is a novel approach to determining the scaling relation between a cluster's Sunyaev-Zel'dovich (SZ) effect signal and mass. The deep learning algorithm used is mResUNet, which is a modified feed-forward deep learning algorithm that broadly combines residual learning, convolution layers with different dilation rates, image regression activation and a U-Net framework. We train and test the deep learning model using simulated images of the microwave sky that include signals from the cosmic microwave background (CMB), dusty and radio galaxies, instrumental noise as well as the cluster's own SZ signal. The simulated cluster sample covers the mass range 1$\times 10{14}~\rm M_{\odot}$ $<M_{200\rm c}<$ 8$\times 10{14}~\rm M_{\odot}$ at $z=0.7$. The trained model estimates the cluster masses with a 1 $\sigma$ uncertainty $\Delta M/M \leq 0.2$, consistent with the input scatter on the SZ signal of 20%. We verify that the model works for realistic SZ profiles even when trained on azimuthally symmetric SZ profiles by using the Magneticum hydrodynamical simulations.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.