Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Fast local linear regression with anchor regularization (2003.05747v1)

Published 21 Feb 2020 in cs.LG and stat.ML

Abstract: Regression is an important task in machine learning and data mining. It has several applications in various domains, including finance, biomedical, and computer vision. Recently, network Lasso, which estimates local models by making clusters using the network information, was proposed and its superior performance was demonstrated. In this study, we propose a simple yet effective local model training algorithm called the fast anchor regularized local linear method (FALL). More specifically, we train a local model for each sample by regularizing it with precomputed anchor models. The key advantage of the proposed algorithm is that we can obtain a closed-form solution with only matrix multiplication; additionally, the proposed algorithm is easily interpretable, fast to compute and parallelizable. Through experiments on synthetic and real-world datasets, we demonstrate that FALL compares favorably in terms of accuracy with the state-of-the-art network Lasso algorithm with significantly smaller training time (two orders of magnitude).

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.