Papers
Topics
Authors
Recent
Search
2000 character limit reached

ZSTAD: Zero-Shot Temporal Activity Detection

Published 12 Mar 2020 in cs.CV | (2003.05583v1)

Abstract: An integral part of video analysis and surveillance is temporal activity detection, which means to simultaneously recognize and localize activities in long untrimmed videos. Currently, the most effective methods of temporal activity detection are based on deep learning, and they typically perform very well with large scale annotated videos for training. However, these methods are limited in real applications due to the unavailable videos about certain activity classes and the time-consuming data annotation. To solve this challenging problem, we propose a novel task setting called zero-shot temporal activity detection (ZSTAD), where activities that have never been seen in training can still be detected. We design an end-to-end deep network based on R-C3D as the architecture for this solution. The proposed network is optimized with an innovative loss function that considers the embeddings of activity labels and their super-classes while learning the common semantics of seen and unseen activities. Experiments on both the THUMOS14 and the Charades datasets show promising performance in terms of detecting unseen activities.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.