Papers
Topics
Authors
Recent
2000 character limit reached

Vowels and Prosody Contribution in Neural Network Based Voice Conversion Algorithm with Noisy Training Data

Published 10 Mar 2020 in eess.AS | (2003.04640v1)

Abstract: This research presents a neural network based voice conversion (VC) model. While it is a known fact that voiced sounds and prosody are the most important component of the voice conversion framework, what is not known is their objective contributions particularly in a noisy and uncontrolled environment. This model uses a 2-layer feedforward neural network to map the Linear prediction analysis coefficients of a source speaker to the acoustic vector space of the target speaker with a view to objectively determine the contributions of the voiced, unvoiced and supra-segmental components of sounds to the voice conversion model. Results showed that vowels 'a', 'i', 'o' have the most significant contribution in the conversion success. The voiceless sounds were also found to be most affected by the noisy training data. An average noise level of 40 dB above the noise floor were found to degrade the voice conversion success by 55.14 percent relative to the voiced sounds. The result also shows that for cross-gender voice conversion, prosody conversion is more significant in scenarios where a female is the target speaker.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.