Papers
Topics
Authors
Recent
2000 character limit reached

Pricing Interest Rate Derivatives under Volatility Uncertainty

Published 10 Mar 2020 in q-fin.PR and q-fin.MF | (2003.04606v3)

Abstract: In this paper, we study the pricing of contracts in fixed income markets under volatility uncertainty in the sense of Knightian uncertainty or model uncertainty. The starting point is an arbitrage-free bond market under volatility uncertainty. The uncertainty about the volatility is modeled by a G-Brownian motion, which drives the forward rate dynamics. The absence of arbitrage is ensured by a drift condition. Such a setting leads to a sublinear pricing measure for additional contracts, which yields either a single price or a range of prices. Similar to the forward measure approach, we define the forward sublinear expectation to simplify the pricing of cashflows. Under the forward sublinear expectation, we obtain a robust version of the expectations hypothesis, and we show how to price options on forward prices. In addition, we develop pricing methods for contracts consisting of a stream of cashflows, since the nonlinearity of the pricing measure implies that we cannot price a stream of cashflows by pricing each cashflow separately. With these tools, we derive robust pricing formulas for all major interest rate derivatives. The pricing formulas provide a link to the pricing formulas of traditional models without volatility uncertainty and show that volatility uncertainty naturally leads to unspanned stochastic volatility.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.