Papers
Topics
Authors
Recent
2000 character limit reached

Closure Properties for Private Classification and Online Prediction

Published 10 Mar 2020 in cs.LG and stat.ML | (2003.04509v3)

Abstract: Let~$\cH$ be a class of boolean functions and consider a {\it composed class} $\cH'$ that is derived from~$\cH$ using some arbitrary aggregation rule (for example, $\cH'$ may be the class of all 3-wise majority-votes of functions in $\cH$). We upper bound the Littlestone dimension of~$\cH'$ in terms of that of~$\cH$. As a corollary, we derive closure properties for online learning and private PAC learning. The derived bounds on the Littlestone dimension exhibit an undesirable exponential dependence. For private learning, we prove close to optimal bounds that circumvents this suboptimal dependency. The improved bounds on the sample complexity of private learning are derived algorithmically via transforming a private learner for the original class $\cH$ to a private learner for the composed class~$\cH'$. Using the same ideas we show that any ({\em proper or improper}) private algorithm that learns a class of functions $\cH$ in the realizable case (i.e., when the examples are labeled by some function in the class) can be transformed to a private algorithm that learns the class $\cH$ in the agnostic case.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.